135 research outputs found

    The role of habit in compulsivity.

    Get PDF
    Compulsivity has been recently characterized as a manifestation of an imbalance between the brain׳s goal-directed and habit-learning systems. Habits are perhaps the most fundamental building block of animal learning, and it is therefore unsurprising that there are multiple ways in which the development and execution of habits can be promoted/discouraged. Delineating these neurocognitive routes may be critical to understanding if and how habits contribute to the many faces of compulsivity observed across a range of psychiatric disorders. In this review, we distinguish the contribution of excessive stimulus-response habit learning from that of deficient goal-directed control over action and response inhibition, and discuss the role of stress and anxiety as likely contributors to the transition from goal-directed action to habit. To this end, behavioural, pharmacological, neurobiological and clinical evidence are synthesised and a hypothesis is formulated to capture how habits fit into a model of compulsivity as a trans-diagnostic psychiatric trait.CM Gillan is supported by a Sir Henry Wellcome Postdoctoral Fellowship (101521/Z/12/Z).This is the final version of the article. It was first available from Elsevier via https://doi.org/10.1016/j.euroneuro.2015.12.03

    Brain circuitry of compulsivity.

    Get PDF
    Compulsivity is associated with alterations in the structure and the function of parallel and interacting brain circuits involved in emotional processing (involving both the reward and the fear circuits), cognitive control, and motor functioning. These brain circuits develop during the pre-natal period and early childhood under strong genetic and environmental influences. In this review we bring together literature on cognitive, emotional, and behavioral processes in compulsivity, based mainly on studies in patients with obsessive-compulsive disorder and addiction. Disease symptoms normally change over time. Goal-directed behaviors, in response to reward or anxiety, often become more habitual over time. During the course of compulsive disorders the mental processes and repetitive behaviors themselves contribute to the neuroplastic changes in the involved circuits, mainly in case of chronicity. On the other hand, successful treatment is able to normalize altered circuit functioning or to induce compensatory mechanisms. We conclude that insight in the neurobiological characteristics of the individual symptom profile and disease course, including the potential targets for neuroplasticity is an unmet need to advance the field.Dr. Soriano-Mas is funded by a ׳Miguel Servet׳ contract from the Carlos III Health Institute (CP10/00604). Dr. Goudriaan is supported by a VIDI Innovative Research Grant (Grant no. 91713354) funded by the Dutch Scientific Research Association (NWO-ZonMW). Dr. Alonso was funded by the Instituto de Salut Carlos III-FISPI14/00413. Dr. Nakamae received Grant support from MEXT KAKENHI (Nos. 24791223 and 26461753).This is the author accepted manuscript. The final version is available from Elsevier via http://dx.doi.org/10.1016/j.euroneuro.2015.12.00

    Predicting the naturalistic course in anxiety disorders using clinical and biological markers:a machine learning approach

    Get PDF
    BackgroundDisease trajectories of patients with anxiety disorders are highly diverse and approximately 60% remain chronically ill. The ability to predict disease course in individual patients would enable personalized management of these patients. This study aimed to predict recovery from anxiety disorders within 2 years applying a machine learning approach.MethodsIn total, 887 patients with anxiety disorders (panic disorder, generalized anxiety disorder, agoraphobia, or social phobia) were selected from a naturalistic cohort study. A wide array of baseline predictors (N = 569) from five domains (clinical, psychological, sociodemographic, biological, lifestyle) were used to predict recovery from anxiety disorders and recovery from all common mental disorders (CMDs: anxiety disorders, major depressive disorder, dysthymia, or alcohol dependency) at 2-year follow-up using random forest classifiers (RFCs).ResultsAt follow-up, 484 patients (54.6%) had recovered from anxiety disorders. RFCs achieved a cross-validated area-under-the-receiving-operator-characteristic-curve (AUC) of 0.67 when using the combination of all predictor domains (sensitivity: 62.0%, specificity 62.8%) for predicting recovery from anxiety disorders. Classification of recovery from CMDs yielded an AUC of 0.70 (sensitivity: 64.6%, specificity: 62.3%) when using all domains. In both cases, the clinical domain alone provided comparable performances. Feature analysis showed that prediction of recovery from anxiety disorders was primarily driven by anxiety features, whereas recovery from CMDs was primarily driven by depression features.ConclusionsThe current study showed moderate performance in predicting recovery from anxiety disorders over a 2-year follow-up for individual patients and indicates that anxiety features are most indicative for anxiety improvement and depression features for improvement in general

    Negative cognitive schema modification as mediator of symptom improvement after electroconvulsive therapy in major depressive disorder

    Get PDF
    Background: Electroconvulsive therapy (ECT) is a potent option for treatment-resistant major depressive disorder (MDD). Cognitive models of depression posit that negative cognitions and underlying all-or-nothing negative schemas contribute to and perpetuate depressed mood. This study investigates whether ECT can modify negative schemas, potentially via memory reactivation, and whether such changes are related to MDD symptom improvement. Method: Seventy-two patients were randomized to either an emotional memory reactivation electroconvulsive therapy (EMR-ECT) or control memory reactivation electroconvulsive therapy (CMR-ECT) intervention prior to ECT-sessions in a randomized controlled trail. Emotional memories associated with patients' depression were reactivated before ECT-sessions. At baseline and after the ECT-course, negative schemas and depression severity were assessed using the Dysfunctional Attitude Scale (DAS) and Hamilton Depression Rating Scale HDRS. Mediation analyses were used to examine whether the effects of ECT on HDRS-scores were mediated by changes in DAS-scores or vice versa. Results: Post-ECT DAS-scores were significantly lower compared to baseline. Post-ECT, the mean HDRS-score of the whole sample (15.10 ± 8.65 [SD]; n = 59) was lower compared to baseline (24.83 ± 5.91 [SD]). Multiple regression analysis showed no significant influence of memory reactivation on schema improvement. Path analysis showed that depression improvement was mediated by improvement of negative cognitive schemas. Conclusion: ECT is associated with improvement of negative schemas, which appears to mediate the improvement of depressive symptoms. An emotional memory intervention aimed to modify negative schemas showed no additional effect

    Effectiveness of Emotional Memory Reactivation vs Control Memory Reactivation Before Electroconvulsive Therapy in Adult Patients With Depressive Disorder A Randomized Clinical Trial:A Randomized Clinical Trial

    Get PDF
    Importance: Although electroconvulsive therapy (ECT) is often effective, approximately half of patients with depression undergoing ECT do not benefit sufficiently, and relapse rates are high. ECT sessions have been shown to weaken reactivated memories. The effect of emotional memory retrieval on cognitive schemas remains unknown. Objective: To assess whether emotional memory retrieval just before patients receive ECT sessions weakens underlying cognitive schemas, improves ECT effectiveness, increases ECT response, and reduces relapse rates. Design, Setting, and Participants: In this multicenter randomized clinical trial conducted from 2014 to 2018 in the departments of psychiatry in 3 hospitals in the Netherlands, 72 participants were randomized 1:1 to 2 parallel groups to receive either emotional memory reactivation (EMR-ECT) or control memory reactivation (CMR-ECT) interventions before ECT sessions. The Hamilton Depression Rating Scale (HDRS [total score range: 0-52, with 0-7 indicating no depression and ≥24 indicating severe depression]) was used to measure symptoms of depression during and after ECT, with a 6-month follow-up period. Participants were between ages 18 and 70 years with a primary diagnosis of unipolar major depressive disorder (MDD) according to the Diagnostic and Statistical Manual of Mental Disorders (Fourth Edition, Text Revision) and in whom ECT was indicated. Data analysis was performed from July to November 2019. Interventions: EMR-ECT or CMR-ECT interventions prior to ECT sessions. Main Outcomes and Measures: Depression scores and relapse rates within 6 months were assessed with the HDRS and analyzed using logistic and linear multiple regression analyses. Results: A total of 66 patients (mean [SD] age, 49.3 [12.3] years; 39 [59.1%] women) were randomized to the EMR-ECT group (n = 32) or the CMR-ECT group (n = 34). Regardless of the memory intervention, 42.4% (28 of 66) of patients responded (≥50% decrease of symptom severity on the HDRS). Of patients who responded, 39.3% (11 of 28) relapsed within 6 months. Remission rates (CMR-ECT group, 29.4% [10 of 34] vs EMR-ECT group, 25.0% [8 of 32]; P = .58), mean (SD) HDRS scores after the ECT course (CMR-ECT group, 14.6 [8.6] vs EMR-ECT group, 14.9 [8.8]; P = .88), total mean (SD) number of required ECT sessions for response (CMR-ECT group, 14.9 [7.9] vs EMR-ECT group, 15.6 [7.3]; P = .39), and relapse rates (CMR-ECT group, 46.7% [7 of 15] vs EMR-ECT group, 30.8% [4 of 13]; P = .33) were not significantly altered by the intervention. Conclusions and Relevance: Study findings suggest that the EMR-ECT intervention just before patient receipt of ECT for depression did not improve effectiveness, increase speed of response, or reduce relapse rates after the ECT course compared with patients receiving CMR-ECT. Trial Registration: Trialregister.nl Identifier: NL4289

    Effective resting-state connectivity in severe unipolar depression before and after electroconvulsive therapy

    Get PDF
    BACKGROUND: Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. OBJECTIVE: We investigated whether there are consistent changes in effective resting-state connectivity. METHODS: This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. RESULTS: Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. CONCLUSIONS: A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research

    Effective resting-state connectivity in severe unipolar depression before and after electroconvulsive therapy

    Get PDF
    Background Electroconvulsive therapy (ECT) is one of the most effective treatments for severe depressive disorders. A recent multi-center study found no consistent changes in correlation-based (undirected) resting-state connectivity after ECT. Effective (directed) connectivity may provide more insight into the working mechanism of ECT. Objective We investigated whether there are consistent changes in effective resting-state connectivity. Methods This multi-center study included data from 189 patients suffering from severe unipolar depression and 59 healthy control participants. Longitudinal data were available for 81 patients and 24 healthy controls. We used dynamic causal modeling for resting-state functional magnetic resonance imaging to determine effective connectivity in the default mode, salience and central executive networks before and after a course of ECT. Bayesian general linear models were used to examine differences in baseline and longitudinal effective connectivity effects associated with ECT and its effectiveness. Results Compared to controls, depressed patients showed many differences in effective connectivity at baseline, which varied according to the presence of psychotic features and later treatment outcome. Additionally, effective connectivity changed after ECT, which was related to ECT effectiveness. Notably, treatment effectiveness was associated with decreasing and increasing effective connectivity from the posterior default mode network to the left and right insula, respectively. No effects were found using correlation-based (undirected) connectivity. Conclusions A beneficial response to ECT may depend on how brain regions influence each other in networks important for emotion and cognition. These findings further elucidate the working mechanisms of ECT and may provide directions for future non-invasive brain stimulation research.publishedVersio

    Changes in functioning of mesolimbic incentive processing circuits during the premenstrual phase

    Get PDF
    The premenstrual phase of the menstrual cycle is associated with marked changes in normal and abnormal motivated behaviors. Animal studies suggest that such effects may result from actions of gonadal hormones on the mesolimbic dopamine (DA) system. We therefore investigated premenstrual changes in reward-related neural activity in terminal regions of the DA system in humans. Twenty-eight healthy young women underwent functional magnetic resonance imaging on 2 days during the menstrual cycle, once during the late follicular phase and once during the premenstrual phase, in counterbalanced order. Using a modified version of the monetary incentive delay task, we assessed responsiveness of the ventral striatum to reward anticipation. Our results show enhanced ventral striatal responses during the premenstrual as compared to the follicular phase. Moreover, this effect was most pronounced in women reporting more premenstrual symptoms. These findings provide support for the notion that changes in functioning of mesolimbic incentive processing circuits may underlie premenstrual changes in motivated behaviors. Notably, increases in reward-cue responsiveness have previously been associated with DA withdrawal states. Our findings therefore suggest that the sharp decline of gonadal hormone levels in the premenstrual phase may trigger a similar withdrawal-like state
    • …
    corecore